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This study focuses on the effect of spatial non-uniformity in the ambient flow on the
forces acting on a spherical particle at moderate particle Reynolds numbers. A scaling
analysis is performed to obtain conditions under which such effects are important. A
direct numerical simulation, based on spectral methods, is used to compute the three-
dimensional time-dependent flow past a stationary sphere subject to a uniform flow
plus a planar straining flow. The particle Reynolds number, Re, in the range 10 to 300
covering different flow regimes, from unseparated flow to unsteady vortex shedding,
is considered. A variety of strain magnitudes and orientations are investigated. A
systematic comparison with the potential flow results and axisymmetric strain results
is given. Under elongational strain, both the planar and axisymmetric cases are found
to stabilize the sphere wake and delay the onset of unsteadiness, while compressional
strain leads to instability. In terms of separation angles, length of the recirculation
eddy and topology of the surface streamlines, planar and axisymmetric strains yield
nearly the same results. The drag force appears to have a linear relation with strain
magnitude in both cases, as predicted by the potential flow. However, contrary to the
potential flow results, the drag in planar strain is higher than that in axisymmetric
strain. The generation of higher drag is explained using the surface pressure and
vorticity distributions. Planar strain oriented at an angle with the oncoming uniform
flow is observed to break the symmetry of the wake and results in a lift or side
force. The variation of the drag and lift forces may be quite complex, and unlike
the potential flow results they may not be monotonic with strain magnitude. The
direction of the lift force may be opposite to that predicted by the inviscid and
low Reynolds number (Re� 1) theories. This behaviour is dictated by the presence
or absence of a recirculation eddy. In the absence of a recirculation region at
low Reynolds numbers (Re < 20), or at a very high strain magnitude when the
recirculation region is suppressed, the results follow somewhat the pattern observed
in potential flow. However, with the presence of a recirculation region, results opposite
to those predicted by the potential theory are observed.

1. Introduction
The prediction of the forces acting on a particle moving in a fluid is important in

many particle-laden flows. Though the problem has received attention for more than
a century, many questions remain unresolved. In particular, a generalized form for the
equation of motion of an individual particle that allows for both temporal and spatial
variations in the surrounding flow is lacking. The effect of temporal acceleration –
in the surrounding flow as well as of the particle itself – has been investigated in
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great detail over the past years, especially in the context of low Reynolds number
and potential flows, and to some extent for finite particle Reynolds numbers. On the
other hand, investigations of the effect of spatial non-uniformity in the undisturbed
flow have been primarily limited to the potential flow and low Reynolds number
limits. When the particle Reynolds number becomes finite, very little information is
available on the nature of the flow field and the resulting forces.

One of the earliest to recognize the importance of spatial non-uniformity in the
undisturbed ambient flow on the motion of a particle was Taylor (1928), who
was concerned with the motion of large airships. Taylor, and later Tollmien (1938),
computed the rate of change of kinetic energy of the fluid around bodies in irrotational
non-uniform flows. Their investigations showed that the added-mass force acting on
a stationary sphere in a steady straining flow is proportional to the pressure gradient
measured at the centre of the sphere. Taylor also performed wind tunnel experiments
to confirm the inviscid theory in predicting the correct equilibrium position of bodies
of different shapes in converging, diverging and curved flows. Over the years Taylor’s
work has been revisited and generalized by others including Voinov, Voinov & Petrov
(1973), and Auton, Hunt & Prud’homme (1988).

In the limit of zero Reynolds number, the unsteady motion of a particle is governed
by the classical Basset–Boussinesq–Oseen (BBO) equation (Maxey & Riley 1983). In
this limit the effect of quadratic variation in the undisturbed ambient flow appears
as the Faxén correction (Gatignol 1983). It was shown by Saffman (1965) in his
celebrated work that the shear-induced lift force can be obtained only by considering
the viscous and inertial effect together at small but non-zero Reynolds number. Over
the years, Saffman’s work has been extended in many ways. An interesting review
on the subject is given by Stone (2000). Flows other than shear have also received
attention in the limit of small but non-zero Re; e.g. pure straining flow by Bedeaux
& Rubi (1987), pure rotational flow by Herron, Davis & Bretherton (1975) and
Weisenborn (1985), and combined rotational and straining flow by Pérez-Madrid,
Rubi & Bedeaux (1990).

Investigation of the effects of non-uniform ambient flow at moderate Re (> 1) has
been limited. In most applications, such effects are not taken into consideration due
to the introduction of additional parameters as well as the significantly increased cost
of computation. Hence, the results of uniform ambient flow are taken for granted.
This approach is indeed valid for particles of size much smaller than the smallest
relevant flow scale (for example, Kolmogorov length scale), such that the ambient
flow variation over one particle diameter is much smaller than the relative velocity
U r . However, as the flow variation over a particle diameter becomes comparable to
U r , the effect cannot be ignored. The numerical simulations of Magnaudet, Rivero
& Fabre (1995) for axisymmetric straining flow and of Dandy & Dwyer (1990) and
Kurose & Komori (1999) for linear shear flow have shown that even a 10% variation
in the ambient flow over a particle diameter can have a significant effect.

As in the previous investigations, in this paper we will restrict our attention to
linearly varying flows. In other words, the undisturbed flow U (x) is expanded only
up to ∇U such that U (x) ≈ U (x = 0) + x · ∇U |x=0. A particle is located at x = 0 and
the velocity of the particle is denoted by V , such that the relative velocity of the flow
is given by U r = U (x = 0)− V . Such a linearization can be considered appropriate
provided the flow variation over d is small but not negligible. Of course, for a particle
size greater than the scale of the ambient flow, the problem can be quite complex.
The force on the particle cannot be parameterized completely in terms of U r and
∇U |x=0 alone, and higher-order gradients of U will be required.
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In this paper, we will investigate the effect of a planar straining flow on the
forces acting on a stationary spherical particle. Thus our work complements the
investigation of Magnaudet et al. (1995), who considered the effect of axisymmetric
strain. Axisymmetric strain is appropriate for particles in nozzles, in pipe flows with
sudden expansion or contraction and in axisymmetric jets. On the other hand, planar
strain will be appropriate in the case of planar nozzles, in sudden planar expansion
or contraction and in planar jets. The effect of such a large-scale mean flow gradient
is relevant, for example, in the motion of airships and underwater vessels. Apart
from the mean flow effect, the local turbulent velocity gradient can also play a
role in determining particle forces. There is ample experimental and computational
evidence to suggest that particles tend to accumulate in regions of high strain and
to avoid regions of high vorticity (Wang & Maxey 1993; Elghobashi & Truesdell
1992; Squires & Eaton 1991). Furthermore, studies on turbulent structure (isotropic
turbulence: Ashurst et al. (1987), convective turbulence: Balachandar (1992)) indicate
that regions of local strain are more likely to be planar than axisymmetric. Thus there
is sufficient interest in the investigation of particles subjected to planar strain.

The uniform relative motion, U r , of an undisturbed ambient flow is characterized
in terms of the particle Reynolds number, Re = |U r|d/ν. With the inclusion of a
superimposed straining flow, additional parameters are required. The strength of the
straining motion is measured in terms of the variation in U over a particle diameter
compared to U r . The nature of the straining flow can be varied systematically from
planar strain to axisymmetric strain. The orientation of the principal axes of the
strain-rate tensor relative to the direction of U r can also be varied. The present
investigation covers a Reynolds number range of 10 to 300, thus extending from
steady unseparated flow to periodic shedding of wake vortices, in the strain-free case.
Consistent with the findings of Magnaudet et al. (1995), even a modest planar strain
has a strong influence on the flow structure around the particle. The elongational axis
of strain being aligned with the direction of U r tends to suppress the wake, and at
sufficient strain magnitude the recirculation region is completely eliminated. On the
other hand, the compressional alignment of strain results in severe instability of the
wake. The presence or absence of a recirculation region in the wake is likely to have
a strong influence on the behaviour of the drag and lift forces. When the wake region
is completely suppressed, these forces follow the same pattern found in potential flow.
However, with the presence of the wake, their influence can be quite complex. In this
regard the structure of the wake is quite important in understanding the forces acting
on the particle.

This paper will focus on the effect of planar strain on the structure of the wake.
One important difference between axisymmetric and planar strain is that under planar
strain the flow is three-dimensional even in the absence of unsteadiness in the wake.
Azimuthal variation in the flow, and correspondingly an azimuthal component of the
flow, exist at all Re. Of course, as Re increases the flow becomes unsteady with vortex
shedding, resulting in a time-dependent three-dimensional flow, even in the absence of
imposed strain. In order to properly resolve the flow details and to accurately predict
the lift and drag forces it is important to have a high-resolution three-dimensional
and time-dependent numerical methodology. Here we employ a Fourier–Chebyshev
pseudo-spectral (collocation) method, which is described in § 3. The effect of strain on
the structure of the wake and the surface distribution of pressure and shear stress will
be considered in § 4. In that section we will also study the resulting lift and drag forces
and compare them with the potential flow prediction. Discussion and conclusions will
be presented in § 5.
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2. Scaling analysis
The primary effect of a non-uniform irrotational ambient flow is to introduce an

added-mass force arising from convective acceleration. This inertial force is analogous
to the added-mass force arising from the temporal acceleration of either the particle
or the surrounding flow. The added-mass and Basset history forces due to particle
acceleration are often neglected for the case of large particle to fluid density ratio. In
contrast, the results on particle force in straining flows (Taylor 1928; Magnaudet et
al. 1995) suggest that the inertial force due to ambient non-uniformity is independent
of the density ratio. The purpose of this section is to establish conditions under which
ambient non-uniformity would be important.

Consider the general case of a freely moving particle (droplet or bubble) at finite
Reynolds number in an otherwise irrotational ambient flow. An appropriate starting
point for the analysis is a semi-empirical equation for the force on the particle
(Magnaudet & Eames 2000) expressed as

F = F sv + mf
DU

Dt
+ mfCM

(
∂U

∂t
− dV

dt

)
+ mfCMU · ∇U

+ 3
2
d2√πρfµ

∫ t

−∞
K(t, τ)

d(U − V )

dτ
dτ, (2.1)

where the fluid velocity U and its spatial and temporal derivatives are evaluated at
the particle position. Here mf is the mass of the fluid displaced by the particle and
D/Dt and d/dt are the total derivatives following a fluid element and the particle,
respectively. The first term is the Stokes-like viscous force appropriate for finite Re
and the second term is the pressure gradient force. The third term accounts for
the added-mass effect arising from the temporal acceleration of the particle and the
undisturbed flow. Here CM is the added-mass coefficient. The fourth term is the
added-mass force arising from convective acceleration. The last term is the Basset
history force, which accounts for the viscous effect of unsteadiness. The history kernel
K(t, τ) is proportional to (t− τ)−1/2 over a short time as derived by Basset, whereas at
longer time it decays much faster as shown by Mei & Adrian (1992) and Lovalenti
& Brady (1993).

Let the length and velocity scales of the ambient flow be denoted by L and U0.
For simplicity consider the only time scale of the ambient flow to be L/U0. If initial
transient effects are ignored, it is reasonable to take the particle velocity V and the
relative velocity U r both to scale as U0. The characteristic time scale for particle
motion is the particle response time, τp = (ρ+ CM)d2/(18ν), where ρ = ρp/ρf is the
particle to fluid density ratio. The appropriate scaling for the fluid acceleration is
U2

0/L, while that for the particle acceleration is U0/τp.
The order of magnitude of the inertial forces (added mass and pressure gradi-

ent) and the history forces in (2.1) compared to the leading term, F sv, are, with
contributions from the fluid and particle acceleration listed separately,

Inertial force History force

fluid acceleration: Re
d

L

√
Re

d

L

particle acceleration:
1

(ρ+ CM)

1√
(ρ+ CM)

The following observations can be made from the above list. Particle acceleration
follows the expected scaling: a heavy particle (ρ� 1) accelerates slowly and therefore
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its effect on the added-mass and history forces is negligible. In contrast, the inertial and
history forces arising due to the fluid acceleration are independent of the density ratio
ρ and depend only on Re d/L. For Re d/L < 1, the history force is more important
than the inertial force, which is in agreement with the scaling argument presented
in Mei (1990). However, at finite Re a faster decay of the history kernel reduces
the importance of the history force at higher Re. In contrast, the inertial forces are
important in this limit. Thus, if the particle Reynolds number and the ambient flow
variation on the scale of the particle (d/L) are of O(1) the effect of ambient flow
non-uniformity cannot be ignored, irrespective of the density ratio.

3. Numerical methodology
3.1. Governing equations

We consider a spherical particle held fixed (V = 0) at the origin x = 0 of an inertial
frame. A particle moving at a constant speed can be considered easily, by choosing
a reference frame moving along with it and letting the ambient flow be corrected for
the particle velocity. The undisturbed flow U is steady, linearly varying in space and
directed along the x-axis at the particle position, such that

U (x) = |U r|ex + x · (S + Ω), (3.1)

where S and Ω are the pure strain and rotational part of the velocity gradient.
A perturbation field u′(x, t) takes into account the deviations from the ambient
flow due to the presence of the sphere. Hence the net flow field u(x, t) can be
written as u(x, t) = U (x) + u′(x, t). At large distances from the particle (x→∞), u(x, t)
approaches the undisturbed ambient flow, and on the particle surface it satisfies no-slip
and no-penetration conditions.

The sphere diameter d and the magnitude of the relative velocity |U r| are used
to non-dimensionalize the variables. In the following discussion any dimensionless
variable will be denoted by a tilde. The governing equations for the total velocity
ũ(x̃, t̃) are given by the Navier–Stokes equations as

∇ · ũ = 0, (3.2)

∂ũ

∂t̃
+ ũ · ∇ũ = −∇p̃+

1

Re
∇2ũ. (3.3)

In terms of ũ′ the above equations are

∇ · ũ′ = 0, (3.4)

∂ũ′

∂t̃
+ ũ′ · ∇ũ′ + ũ′ · ∇Ũ + Ũ · ∇ũ′=−∇p̃′ + 1

Re
∇2ũ′. (3.5)

Here p̃ (x̃, t̃ ) = P̃ (x̃) + p̃′(x̃, t̃ ), and P̃ (x̃) is related to Ũ by

∇P̃ = −Ũ · ∇Ũ . (3.6)

The perturbation velocity ũ′ and pressure p̃′ are determined by solving (3.4)–(3.5)
with appropriate boundary conditions. The total flow field is then obtained by adding
Ũ and P̃ to them. The resultant force (in dimensional form) on the sphere is obtained
by integrating the normal and tangential stresses on the surface:

F =

∫
S

[−per + τrθeθ + τrφeφ] dS. (3.7)
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The first term on the right-hand side is the pressure force, while the next two terms
are the viscous force. The non-dimensional force coefficient is defined as

CF =
F

1
2
ρf |U r|2π(d/2)2

. (3.8)

The component of CF along the x-axis is the drag coefficient CD .

3.2. Spatial discretization

We consider a spherical coordinate system (r, θ, φ) (figure 1a) where

d/2 6 r 6 R, 0 6 θ 6 π, 0 6 φ 6 2π.

Here R represents the boundary of the computational domain. A Chebyshev expansion
is implemented in the radial direction. The Gauss–Lobatto collocation points in r are
first evaluated on [−1, 1] as

ξi = −cos

[
π(i− 1)

Nr − 1

]
, (3.9)

for i = 1, 2, . . . , Nr , where Nr is the number of radial grid points. Then a grid stretching
is used to cluster points in the shear layer near the surface of the sphere. The function
used for radial stretching is given by

ξ̂ = C0 + C1ξ − C0ξ
2 + C3ξ

3, (3.10)

C1 = 0.5(−γ1 + 2C0 + 3), C3 = 0.5(γ1 − 2C0 − 1). (3.11)

The parameters C0 and γ1 are used to vary the amount of stretching. The computa-
tional points in physical space are obtained using the mapping

ri = 1
2
ξ̂i
(

1
2
d− R)+ 1

2

(
1
2
d+ R

)
. (3.12)

The azimuthal direction φ is periodic over 2π, and a Fourier expansion is used
along this direction. The collocation points in φ are computed as

φk = 2π(k − 1)/Nφ (3.13)

for k = 1, 2, . . . , Nφ, where Nφ is the number of grid points in φ. In the tangential
direction θ, it is sufficient to define the variables over the interval 0 6 θ 6 π; however,
the variables are periodic over 2π, and not over π. Thus a Fourier collocation in θ can
be used only with some symmetry restrictions. One may note that a scalar, the radial
component of a vector, and the radial derivative of a scalar are continuous over the
poles (θ = 0 and π). But the tangential and the azimuthal components of a vector
change sign across the poles. The tangential and azimuthal derivatives of a scalar
also change sign. This is the so-called ‘parity’ problem in spherical geometry, and has
been discussed by Merilees (1973), Orszag (1974) and Yee (1981). The problem of
pole-parity does not arise if surface harmonics are used. However, spectral methods
using surface harmonics require O(N) operations per mode, while those based on
Fourier series require only O(logN) operations. In the present study, a suitable
Fourier expansion in θ is derived formally by following Shariff’s (1993) approach. We
start by considering a typical term in the expansion: c̃

ũr
ũθ

 =

 α
β
γ

 r̃p exp(imθ) exp(ikφ), (3.14)
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where c̃ represents a scalar. The method requires that a scalar and the Cartesian com-
ponents of a vector each independently be analytic at the poles. Such a requirement
results in the following acceptable expansions:

c̃ =


∑

αpmkTp(r̃) cos(mθ) exp(ikφ) even k∑
αpmkTp(r̃) sin(mθ) exp(ikφ) odd k,

(3.15)

ũr =


∑

βpmkTp(r̃) cos(mθ) exp(ikφ) even k∑
βpmkTp(r̃) sin(mθ) exp(ikφ) odd k

(3.16)

and

ũθ =


∑

γpmkTp(r̃) sin(mθ) exp(ikφ) even k∑
γpmkTp(r̃) cos(mθ) exp(ikφ) odd k,

(3.17)

where Tp represents the pth Chebyshev polynomial and i =
√−1; m and k are the

wavenumbers in the θ- and φ-directions. Here α, β and γ are the coefficients in the
expansions and are functions of p, m and k. The expansion for ũφ follows that of ũθ .

The collocation points in θ are distributed as

θ̂j =
π

Nθ

[ j − 1/2] (3.18)

for j = 1, 2, . . . , Nθ , where Nθ is the number of grid points in θ. A grid stretching is
used to cluster points in the wake region of the sphere as

θj = tan−1

[
sin(θ̂j)(1− ~2)

cos(θ̂j)(1 + ~2)− 2~

]
, (3.19)

where ~ is the parameter that controls the degree of stretching. In the simulations
to be reported here, a value of ~ = −0.35 provides sufficient resolution in the sphere
wake. A φ-projection of a typical mesh is shown in figure 1(b).

3.3. Temporal discretization

A two-step time-split method is used to advance ũ′ in time. In the first step the
velocity field is advanced from time level n to an intermediate level ‘?’ by solving the
advection–diffusion equation

ũ′? − ũ′n
∆t̃

+ NL(ũ′n) =
1

Re
D(ũ′?), (3.20)

where D and NL are the diffusion and nonlinear terms. This is followed by a pressure
correction step

ũ′n+1 − ũ′?
∆t̃

= −∇p̃′n+1. (3.21)

By satisfying the divergence-free condition, ∇ · ũ′n+1 = 0, a Poisson equation for pres-
sure is obtained from (3.21) as

∇2p̃′n+1 =
∇ · ũ′?

∆t̃
. (3.22)

The above equation is solved fully implicitly for p̃′n+1, and the intermediate velocity ũ′?
is then corrected by (3.21) to obtain ũ′ at (n+ 1). In the advection–diffusion step, the
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Figure 1. (a) Schematic of the spherical coordinate and (b) a φ-projection
of the computational grid.

nonlinear and the cross-derivative terms are treated explicitly using a second-order
Adams–Bashforth scheme. The θ-diffusion term is also treated explicitly. To avoid the
severe viscous stability constraint due to the grid stretching near the surface, the radial
diffusion term is treated implicitly using a Crank–Nicholson scheme. The azimuthal
diffusion term decouples from the rest of the operators when the momentum equation
is transformed to Fourier space; hence it is also treated implicitly.

3.4. Boundary conditions

Due to their global nature, spectral methods are extremely sensitive to boundary con-
ditions. Only carefully derived boundary conditions will produce stable and consistent
results. At the inflow, the Dirichlet boundary condition specifying an undisturbed am-
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bient flow is used. At the outflow, a non-reflecting boundary condition by Mittal &
Balachandar (1996) is used. The idea is to smoothly parabolize the governing equa-
tions by multiplying the radial diffusion terms by a filter function. The filter function
is such that the diffusion terms are unaltered in most of the computational domain,
while at the outflow boundary they smoothly vanish. Hence the method does not
require any explicit outflow boundary condition, and the governing equations are
solved there.

The radius of the outer boundary is usually taken to be 30 times the radius of the
sphere. The effect of the domain size was investigated by comparing the results with
those of a larger domain of size 60 times the sphere radius. For example, the drag
and lift coefficients obtained from the two cases for a linear shear flow past a sphere
at Re = 100 are 1.1183, −0.0123 and 1.1181, −0.0123, respectively, clearly implying
the domain-independence of the results.

On the surface of the sphere, no-slip and no-penetration conditions are imposed
for the total velocity field ũ. This is equivalent to the condition that ũ′ = −Ũ on
the sphere surface. In the context of time-split schemes the appropriate boundary
condition for the intermediate velocity is

ũ′? = −Ũ + ∆t̃(2∇p̃′n − ∇p̃′n−1). (3.23)

Combined with the homogeneous Neumann boundary condition for pressure,
∂p̃′n+1/∂r̃ = 0, (3.23) guarantees zero penetration through the surface of the sphere,
while the no-slip condition is satisfied to O(∆t̃ 3). A typical ∆t̃ used in the present
study is 0.001. Note that the Neumann condition for pressure is applied on the dis-
turbance pressure p̃′ and not the total pressure p̃. The total pressure will not satisfy
a Neumann condition because ∂P̃ /∂n is not zero on the boundary due to the nature
of the imposed straining flow.

3.5. Pole stability

Due to the topology of the grid, the azimuthal resolution is spatially non-uniform.
The resolution is much higher near the poles than at the equator. Furthermore, the
azimuthal grid spacing linearly decreases with the radial location as the surface of
the sphere is approached. The viscous stability constraint due to such non-uniform
resolution is avoided by the implicit treatment of the radial and azimuthal diffusion
terms. However, the time-step size is still restricted by the convective stability (CFL)
condition. Ideally it is desirable to have higher spatial resolution only in regions as
demanded by the local flow structure. A simple strategy to remove higher φ resolution
in regions where it is not needed is to filter high-frequency components. Such a filter
necessarily has to be a function of both r̃ and θ.

There are some constraints that must be satisfied by the pole filter. It must be
sufficiently smooth in all its variables to preserve spectral convergence. The analytic
nature of the scalar and vector fields requires that in the limit θ → 0 and π, only the
azimuthal modes k = 0 and k = ±1 exist in the expansions (3.15)–(3.17). Physically,
k = 0 is the axisymmetric mode and it does not contribute to the pole stability
constraint. The k = ±1 modes are the most unstable and lead to bifurcation in
the flow (Natarajan & Acrivos 1993). Hence, to lowest order, these modes must be
retained over the entire computational domain. From the CFL criterion, it can be
inferred that as long as the φ-spectra of the velocity field decay faster than k−2, the
time step is dictated by the k = ±1 mode. Based on this observation, we introduce a
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pole filter function given by

fφ = 1− exp[−λ1Y
λ2 ], (3.24)

where Y = r̃ sin θ. Here λ1 and λ2 are functions of k and are determined by the
conditions

fφ =
1

k
at Y = Ymin and fφ = 0.9 at Y = kYmin. (3.25)

Here Ymin is the value of Y at the grid point closest to the pole on the sphere (note
that in (3.18) the θ discretization has been chosen to avoid θ = 0 and π points).
Thus the filter function attempts to achieve at least k−2 decay at the point closest to
the pole. However, the filter function approaches unity exponentially such that at a
distance kYmin from the pole, fφ approaches 0.9. Thus filtering is localized to a very
small region near the poles close to the sphere. The size of the filtered region slowly
increases with the azimuthal mode number. The filter is applied on the intermediate
velocity field ũ′? at the end of the advection–diffusion step.

4. Results and discussion
4.1. Uniform flow

Before presenting the results for planar straining flow we will first consider the case
of uniform flow. Simulations are performed in the range 10 6 Re 6 500 to cover four
different flow regimes: unseparated flow for Re < 20, steady axisymmetric flow with
separation for 20 < Re < 210, steady non-axisymmetric flow for 210 < Re < 270 and
unsteady vortex shedding for Re > 270.

Up to Re ≈ 20, the flow does not separate. But there is an asymmetry about
θ = π/2 in the vicinity of the sphere which indicates a departure from Stokes flow.
The onset of separation occurs at around Re = 20 (Le Clair, Hamielec & Pruppracher
1970; Dennis & Walker 1971). The steady separated flow appears as an axisymmetric
toroidal eddy behind the sphere. The topological structure of the wake remains the
same up to Re = 210. At around Re = 210, the axisymmetric nature of the wake is
broken by a regular bifurcation (Natarajan & Acrivos 1993; Tomboulides, Orszag
& Karniadakis 1993). Unlike a two-dimensional bluff body, symmetry breaking in
the sphere wake does not initiate the vortex shedding process and the wake remains
steady for approximately 210 < Re < 270. In this regime, the wake consists of two
streamwise vortices which are opposite in sign and appear as two distinct dye threads
emanating from the end of the recirculating region. It is commonly known as the
‘double threaded’ wake and has a plane of symmetry (the (x, y)-plane, in the present
case). Figures 2(a) (view along the (x, y)-plane) and 2(b) (view normal to the (x, y)-
plane) show the double threaded structure for Re = 250. Here the vortical structure
is extracted in terms of an iso-surface of the imaginary part of the complex conjugate
eigenvalues of the velocity gradient tensor (see Zhou et al. 1999 for details). Above
Re = 270, the steady non-axisymmetric wake undergoes a Hopf bifurcation resulting
in the periodic shedding of vortices. The hairpin-shaped vortical structures are shown
in figures 2(c) and 2(d ) for Re = 350. Even at this Re, a plane of symmetry (the x,
y-plane) in the wake is present which remains fixed in time. In contrast to a two-
dimensional body where vortices are shed alternately from two sides, here vortices are
shed in the same orientation. The vortical structure consists of a chain of interlocking
loops which is similar to the structure postulated by Achenbach (1974). The results
presented here agree well with the simulations of Mittal (1999), Johnson & Patel
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Figure 2. Wake structure in uniform flow. Vortical topology at Re = 250: (a) view along the plane
of symmetry, (b) view normal to the plane of symmetry. Re = 350: (c) view along the plane of
symmetry, (d ) view normal to the plane of symmetry.

(1999), Tomboulides et al. (1993), and flow visualizations by Sakamoto & Haniu
(1990) and Magarvey & Bishop (1961).

A quantitative comparison with previous results is shown in table 1. The drag
coefficient CD , obtained from the present simulations, agrees well with the experimental
correlation of Clift, Grace & Weber (1978). Good agreement is also observed with
the numerical results obtained by Mittal (1999) and Magnaudet et al. (1995). The
separation angle, θs, measured from the rear stagnation point and the length of
the recirculation eddy, Le, measured from the base of the sphere and normalized
by the sphere diameter are also presented for the steady regime. Here also good
agreement is found with the data given in Clift et al. (1978) and the simulation
results of Magnaudet et al. (1995). The separation angle and recirculation length are
not reported for the non-axisymmetric and unsteady cases, as in these regimes the
recirculation eddy is not a closed bubble and the separation line on the sphere surface
is no longer axisymmetric. Non-axisymmetry in the wake produces a lift force, and
the corresponding lift coefficient, CL, at Re = 250 is found to be the same as that
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Present simulations Previous results

Re CD CL θs Le/d St CD CL θs Le/d St

10 4.30 4.32†
50 1.57 40.8 0.41 1.54∗, 1.57∗∗ 40.0† 0.44∗

100 1.09 53.2 0.87 1.09∗, 1.09∗∗ 53.6† 0.87∗
200 0.77 63.7 1.43 0.80∗, 0.765† 65.0† 1.29†
250 0.70 −0.06 0.73∗, 0.68∗∗ −0.06‡
350 0.62 0.135 0.64∗, 0.62∗∗ 0.13–0.14¶
500 0.56 0.175 0.56∗ 0.17–0.18¶
Table 1. Comparison of the present simulations with previous experimental and numerical results
for uniform flow past a sphere. ∗ Clift et al. (1978); ∗∗ Mittal (1999); † Magnaudet et al. (1995);
‡ Johnson & Patel (1999); ¶ Sakamoto & Haniu (1995).

reported in Johnson & Patel (1999). Further comparison in the unsteady regime can be
made for the dimensionless shedding frequency or the Strouhal number, St = fd/|U r|,
where f is the shedding frequency. At Re = 350, St reported by Sakamoto & Haniu
(1995) lies between 0.13 and 0.14 while Mittal’s (1999) simulation predicts St = 0.138.
These results are in reasonable agreement with the present value of 0.135. Similar
agreement is found at Re = 500, where the present simulation predicts St = 0.175
against the experimental range of 0.17–0.18.

The adequacy of grid resolution can be investigated in terms of the decay of the
energy spectra with respect to wavenumber. Here we present the energy spectra for
a uniform flow at Re = 500. For this simulation a grid of Nr = 81, Nθ = 96 and
Nφ = 32 points is used. The radial resolution in terms of the Chebyshev spectra,
measured at two different locations in the near wake, is shown in figure 3(a). At least
7 orders of magnitude of decay is observed. Figure 3(b) shows the θ-spectra at two
different radial locations: within the boundary layer, and at a downstream location
far from the sphere. Here also at least 7 orders of magnitude of decay in energy is
observed. The φ-spectra are shown in figure 3(c) for which a minimum decay of 9
orders is found. The chosen grid therefore provides adequate resolution for Re up to
500. Similar checks on the adequacy of resolution have been performed for all other
cases, including straining flows.

Further validation of the present computational approach in linearly varying flows
is given in table 2. Here we consider an axisymmetric straining flow and a linear shear
flow for varying Reynolds number and dimensionless strain or shear magnitude, s
(to be defined later). The drag coefficient, separation angle and recirculation length
obtained from our simulations are consistent with Magnaudet et al.’s (1995) results
for the straining flow. For the shear flow case, the drag and lift coefficients are in
good agreement with the results of Kurose & Komori (1996).

The grid independence of the present results was further investigated by doubling
the number of grid points in each direction to 161× 160× 64 points. For the case
of a spherical particle in a linear shear flow at Re = 100, s = 0.1, the drag and lift
coefficients with increase in resolution changed from 1.118 and −0.0123 to 1.124 and
−0.0126, respectively. Adequacy of resolution for other cases can be similarly verified.

4.2. Planar strain

In this section we will present the results for a stationary spherical particle subjected
to a steady ambient flow consisting of a uniform flow and a planar straining flow.
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Present simulations Previous results

Imposed flow Parameters CD CL θs Le/d St CD CL θs Le/d St

Axisymmetric Re = 100
strain s = 0.1

1.38 42.5 0.38 1.39 43 0.37

Re = 100
s = 0.2

1.65 33.9 0.21 1.66 35 0.20

Re = 200
s = 0.1

1.07 51.3 0.57 1.06 54 0.60

Re = 300
s = 0.1

0.92 58.6 0.77 0.92 60 0.76

Linear shear Re = 200
s = 0.2

0.79 −0.058 0.80 −0.05

Re = 400
s = 0.2

0.62 −0.075 0.19 0.62 −0.07 0.15–0.17

Table 2. Comparison of the present simulations with previous numerical results for non-uniform
flows over a sphere. Results for axisymmetric strain are compared with Magnaudet et al. (1995);
results for linear shear flows are compared with Kurose & Komori (1999).

10–1

10–3

10–5

10–7

10–9

0 20 40 60 80

(a)

p

E
ne

rg
y

10–1

10–3

10–5

10–7

10–9
0

(b)

m

10–1

10–3

10–5

10–7

10–9

0 5 10

(c)

k
15

10–11

E
ne

rg
y

20 40 60 80

Figure 3. Instantaneous energy spectra along three coordinate directions at Re = 500. (a) Radial
spectra at: θ = 0.07π, φ = 0 ——; and at θ = 0.14π, φ = π · · · · ·. (b) θ-spectra at: r = 0.75d, φ = 0
——; and at r = 10d, φ = π · · · · ·. (c) φ-spectra at: r = 0.75d, θ = 0.07π ——; and at r = 10d,
θ = 0.02π · · · · ·. The fluctuations in the spectra indicate the complex nature of the wake topology
at this Reynolds number.
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The results will be compared with the axisymmetric straining flow considered by
Magnaudet et al. (1995). The uniform flow is given by the relative flow velocity at
x = 0, and in non-dimensional terms Ũ r = ex. The strain-rate tensor for planar strain
is given by

S̃ =

 s cos 2Θ cos2 Φ s sin 2Θ cosΦ −s cos 2Θ sinΦ cosΦ
s sin 2Θ cosΦ −s cos 2Θ −s sin 2Θ sinΦ

−s cos 2Θ sinΦ cosΦ −s sin 2Θ sinΦ s cos 2Θ sin2 Φ

 , (4.1)

where S̃ = Sd/|U r|, and s is the dimensionless strain magnitude. The angles Θ and Φ
measure the relative orientation of the planar strain with respect to Ũ r . The following
orientations are considered in this study:

(a) elongational axis along relative velocity: Θ = 0 and Φ = 0;
(b) compressional axis along relative velocity: Θ = π/2 and Φ = 0;
(c) relative velocity along the plane of strain: Θ 6= 0 or π/2 and Φ = 0;
(d) relative velocity away from the plane of strain: Θ = 0 and Φ 6= 0.

These orientations are schematically shown in figure 4. For axisymmetric strain, cases
(c) and (d ) are the same, whereas for planar strain they are different. In the following
sections we will consider each of these cases in detail.

4.2.1. Elongational axis along relative velocity (Θ = 0, Φ = 0)

The influence of strain on the structure of the wake can be observed in terms of
the changes in the length of the recirculation eddy, separation angle and limiting
streamlines on the sphere surface. The identification of the separation line for a
three-dimensional flow has been a subject of interest for many years. The issue is
discussed by Tobak & Peake (1982). One way to identify the separation line is to
draw the skin friction lines or the limiting streamlines from the two-dimensional
vector field given by the shear stresses τrθ and τrφ on the surface of the sphere. For an
axisymmetric flow, τrθ and τrφ vanish simultaneously along the line of separation, and
the separation is defined as singular separation. For three-dimensional separation, a
second type of separation exists in which the limiting streamlines merge together to
form a separation line. For the latter type of separation, both τrθ and τrφ need not
vanish simultaneously.

The surface streamlines for uniform flow at Re = 200 are shown in figure 5(a). The
view shown is the end view looking along the negative x-direction. The separation
line is a perfect circle due to the steady axisymmetric nature of the wake. The
unsteady non-axisymmetric regime in uniform flow is considered in figure 5(b) for
Re = 300. Since the flow is time-dependent, the surface streamlines in this figure
correspond to an instant in the vortex shedding cycle. Here the (x, y)-plane can be
identified as the plane of symmetry. Though the line of separation is nearly circular,
the non-axisymmetric nature of the wake is clear from the surface streamline pattern.
The separation line does not change significantly over the shedding cycle; however
the rear stagnation point oscillates on the (x, y)-plane. The drag and lift forces
change periodically, and the time-averaged lift remains non-zero. The effect of an
axisymmetric elongational strain imposed on the uniform flow is to stabilize the flow
and delay bifurcation to the non-axisymmetric and unsteady regimes. At Re = 300,
in figure 5(c), the axisymmetric nature of the wake is recovered under the influence
of an axisymmetric strain of magnitude s = 0.1. Consequently, the lift force is zero
and the drag force remains steady in time.

The effect of planar strain on the surface streamlines is shown in figure 5(d ) for
Re = 300 and s = 0.1. Due to the three-dimensional nature of planar strain it is
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Figure 4. Schematic of strain orientation. The notation HSS and LSS refers to high-speed side
and low-speed side of the sphere.

natural to expect the separation line to be non-axisymmetric. On the other hand, the
strong favourable pressure gradient associated with elongational straining flow tends
to stabilize the wake and preserve axisymmetry. The surface streamlines on the sphere
appear to be strikingly similar in both the planar and axisymmetric strain cases.
Similarly to the axisymmetric case, planar strain delays bifurcation to the unsteady
regime. The resulting lift force in planar strain is also zero, and the drag force remains
steady over time.

In axisymmetric straining flow, at moderate Re, the azimuthal component of velocity
uφ, as well as the shear stress τrφ, are zero. Thus, at any φ-plane, the location of
separation is uniquely identified by the condition τrθ = 0. In planar strain, however,
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s = 0.05 s = 0.1 s = 0.2 s = 0.04
Plane s = 0 (Θ = 0) (Θ = 0) (Θ = 0) (Θ = π/2)

(x, y) 33.5 27.5 46.5Re = 50
(x, z)

40.8
34.2 27.2 45.5

(x, y) 46.9 41.8 34.6 58.4Re = 100
(x, z)

53.2
48.1 43.3 33.6 57.3

(x, y) 57.2 52.3 45.5 69.8Re = 200
(x, z)

63.7
58.6 53.6 45.7 69.0

Table 3. Effect of planar strain on separation angles. Here (x, y) and (x, z) are the planes where θs
is measured.

y

z x(a) (b)

(c) (d )

Figure 5. Surface streamlines for a uniform flow at (a) Re = 200, and (b)Re = 300. (c) Axisymmetric
strain at Re = 300 and s = 0.1, (d ) planar strain at Re = 300 and s = 0.1. Flow is directed out of
the plane of the paper.

τrφ is zero only on the (x, y)- and (x, z)-planes. Hence the condition τrθ = 0 can be
used in these planes only. The difference in the separation angles in the two planes will
provide quantitative information about the non-axisymmetry of the wake. Separation
angles measured from the rear stagnation point are listed in table 3. The results
of uniform flow (s = 0) are also listed for comparison. First, we observe that the
presence of an elongational strain delays the onset of separation with increasing s
by imposing a favourable pressure gradient over θ < π/2. Secondly, consistent with
the nature of planar strain, separation on the (x, z)-plane occurs slightly ahead of
that on the (x, y)-plane. Nevertheless, the difference between the separation angles on
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Figure 6. Fluid trajectory for uniform flow at Re = 300 (a, b) and planar strain flow at Re = 300
and s = 0.1 (c, d ). The left panels (a, c) shows the view along the (x, y)-plane, and the right panels
(b, d ) shows the view along the (x, z)-plane.

the (x, y)- and (x, z)-planes is small, which implies that the separation line is nearly
circular even in the case of planar strain. The results of the planar strain cases may
also be compared with the axisymmetric strain cases given in table 2. Consistent with
our observation of surface streamlines, the separation location in the case of planar
strain is very close to that for axisymmetric strain.

Further insight into the non-axisymmetric nature of the wake can be gained by
considering the trajectory of a fluid element. In the regime of steady axisymmetric flow,
the pathlines (or streamlines) remain on individual φ-planes, and there is no mixing of
fluid across these planes. Furthermore, the recirculation region is closed, and the fluid
inside is entrapped. In the unsteady non-axisymmetric regime, the recirculation region
is not closed, and there is significant mixing across different φ-planes. The pathlines
of two fluid elements emanating symmetrically from both sides of the (x, y)-plane are
shown in figure 6(a) for uniform flow at Re = 300. A corresponding view along the
(x, z)-plane is shown in figure 6(b) where the path lines coincide. The fluid element
from the upstream side is drawn around the upper focus of the recirculation eddy
(located on the (x, y)-plane for y > 0). Then it travels around the lower focus (located
on the (x, y)-plane for y < 0) and the upper focus several times before being ejected
from the eddy and joining the downstream flow. The stable or unstable nature of the
upper and lower foci alternates periodically over a shedding cycle. The pathlines are
separated to the left and right of the (x, y)-plane, and there is no mixing across this
plane. However, significant mixing occurs on each side of the plane.

The application of planar strain significantly affects mixing as shown in figures 6(c)
and 6(d ) for the case Re = 300, s = 0.1. We consider the trajectory of two fluid
elements which are initially located symmetrically on either side of the (x, y)-plane.
The fluid element is first drawn towards the stable foci located on the (x, z)-plane. As it
spirals inwards, it is gradually pushed out of the (x, z)-plane and towards the unstable
foci located on the (x, y)-plane. The pathlines in the figure indicate the direction of
azimuthal velocity from one focus to the other. As the unstable foci are approached,
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Figure 7. Separation length in planar strain: •, Re = 50; ◦, Re = 100; �, Re = 200.

the fluid elements begin spiralling outward and finally join the downstream flow. Note
that for planar strain, both the (x, y)- and (x, z)-planes are symmetry planes. Thus
fluid is confined to only one quadrant of the separation eddy resulting in less mixing.
Also unlike the uniform flow case at Re = 300, the stable or unstable nature of the
foci is fixed in time. The trajectory of the fluid elements and the nature of the foci
remain similar at other Reynolds numbers and strain magnitudes as well.

The length of the recirculation region Le normalized by the sphere diameter d is
presented in figure 7. Here, Le is measured from the sphere surface at θ = 0 to the
reattachment point. In elongational strain, the length decreases with higher strain
magnitude; for example at Re = 100, s = 0.2, Le/d is found to be 0.22 compared to its
value of 0.87 in uniform flow. Given a strain of sufficient magnitude, the recirculation
eddy may be suppressed completely as in the case of Re = 50, s = 0.2. Like the
separation angles, the length of the recirculation eddy at a given Reynolds number
and strain magnitude is nearly the same in both planar and axisymmetric strain (see
table 2 for axisymmetric results).

For the case of elongational planar strain, the particle experiences only a drag force.
The corresponding drag coefficient, CD , is compared with the uniform flow result in
figure 8(a). A significant increase in CD under the influence of strain is observed. In
terms of percentage change, the increase in CD is much larger at higher Reynolds
numbers. For example, at Re = 300 and s = 0.2, CD increases by nearly 87%; on the
other hand, at Re = 10 and for the same value of s, the increase is about 25%. The
drag coefficient can be further separated into the pressure and viscous contributions,
CPD and CVD , which are shown in figures 8(b) and 8(c). In the absence of imposed
strain the pressure contribution dominates for Re > 100. However, over the entire
range of Re, the strain-induced increase in the pressure drag is larger than that in
the viscous drag. The difference is small at low Reynolds numbers, but increases
substantially at higher Re.

The change in the drag coefficients with increasing strain magnitude is shown in
figure 9 for Re = 10, 50 and 300. The variation is nearly linear with s, and a similar
trend is observed at other Reynolds numbers. At Re = 10, the contribution from the
viscous drag dominates over pressure drag, and both increase at nearly the same rate.
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Figure 8. Variation of the drag coefficients with Re and s for planar strain at Θ = 0 or π/2, Φ = 0.
(a) CD; (b) CPD; and (c) CVD . - - - - -, uniform flow; —◦—, elongational strain (Θ = 0) at s = 0.1;
—•—, s = 0.2; —4—, compressional strain (Θ = π/2) at s = 0.04.

At higher Re, the pressure drag increases at a faster rate than viscous drag. This
effect can be clearly seen at Re = 50, where the viscous contribution is larger for
weak strain, whereas the pressure contribution is dominant in the range s > 0.2. This
trend continues as Re increases, and at Re = 300 for all s the pressure contribution
dominates. From figure 9, it is clear that the drag coefficients can be expressed as the
sum of two quantities: a baseline drag that corresponds to the uniform flow and a
linearly increasing contribution due to strain,

CD(Re, s) = AD(Re) + BDs, (4.2)

CPD(Re, s) = APD(Re) + BPDs, (4.3)

CVD(Re, s) = AVD(Re) + BVDs. (4.4)

Table 4 lists the intercept along the ordinate (A) and the slope (B) obtained from the
linear fit of the data shown in figure 9. The intercept values for the total, pressure
and viscous drag components are indeed very close to the corresponding values for
uniform flow, i.e. AD(Re) ≈ CD(Re, 0), etc.

The above results for planar strain are qualitatively similar to those for axisymmetric
strain considered by Magnaudet et al. (1995). The baseline total, pressure and viscous
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Strain Re 10 50 100 200 300

Planar 4.31 1.59 1.09 0.78 0.66CD
(5.38) (3.48) (3.21) (2.95) (2.86)
1.51 0.662 0.51 0.42 0.38CPD

(2.96) (2.37) (2.31) (2.26) (2.24)
2.8 0.93 0.58 0.36 0.28CVD

(2.44) (1.09) (0.88) (0.71) (0.66)

Axisymmetric∗ 4.32 1.10 0.77 0.65CD
(4.33) (2.81) (2.70) (2.72)
1.49 0.51 0.40 0.37CPD

(2.57) (1.96) (2.04) (2.08)
2.83 0.59 0.37 0.27CVD

(1.76) (0.86) (0.65) (0.65)

Table 4. The y-intercepts and slopes of the best-fit linear curves for the planar and axisymmetric
strain data. The values in bracket are the slopes. ∗, Axisymmetric data obtained from Magnaudet
et al.’s (1995) simulations.
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Figure 9. Variation of the drag coefficients with s for planar strain at Θ = 0, Φ = 0: (a) Re = 10
(thick lines) and Re = 50 (thin lines); (b) Re = 300. —•—, CD; —◦—, CPD; —�—, CVD; - - - - -,
potential flow result.

drag components are nearly the same in the planar and axisymmetric cases. However,
the slopes are different (see table 4). While the difference is small in the viscous
contribution, it is substantial in the pressure contribution. For the planar strain cases,
the values of BPD and BVD are somewhat higher, which implies that the drag is higher
in planar strain than in axisymmetric strain.

One can use potential flow analysis as the basis for obtaining a fair comparison
between the two cases. In order to do so, the dimensionless strain-rate tensor for
Θ = 0, Φ = 0 for both axisymmetric and planar strains is written in a combined
fashion as

S̃ =

 s 0 0
0 −fss 0
0 0 (fs − 1)s

 . (4.5)

The parameter fs accounts for the nature of strain; it is bounded between 1/2
(axisymmetric strain) and 1 (planar strain). The velocity potential for an ambient flow



Steady planar straining flow past a sphere 385

Ũ = ex + S̃ · x can be written as(
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192r̃3

)
sin2 θ cos 2φ. (4.6)

The first term is due to the uniform flow, and the remaining terms represent con-
tributions from strain. Using the Bernoulli equation, the pressure coefficient on the
surface of the sphere is evaluated as

Cp = 1− [− 3
2

sin θ + 5
12
s( 1

2
− fs) sin 2θ cos 2φ− 5

8
s sin 2θ

]2
− [ 5

6
s( 1

2
− fs) sin θ sin 2φ

]2
. (4.7)

The above surface pressure distribution yields a drag coefficient of 2s, which is, sur-
prisingly, independent of the planar or axisymmetric nature of strain. This behaviour
is also implied in the inviscid analyses of Taylor (1928) and Auton et al. (1988).
Therefore, for potential flow the only quantity that matters is the strain magnitude
s, which can be interpreted as the component of S̃ along relative velocity. The exact
partitioning of the strain-rate tensor along the other two directions does not matter.
A comparison of the numerical results for the planar and axisymmetric strain cases
presented in table 4 shows that this lack of dependence on the nature of strain for
potential flow does not extend to finite Reynolds numbers. For the same s, planar
strain results in larger drag. One possible explanation could be that the overall

strain magnitude, measured in terms of
√

tr(S̃2), is larger for planar strain than for
axisymmetric strain.

The influence of strain on the pressure drag can be illustrated further by looking at
the distribution of the pressure coefficient, CP , on the surface of the sphere. For the
uniform flow and axisymmetric strain cases, the pressure distribution is independent
of the azimuthal angle, φ. For the case of planar strain, pressure is non-axisymmetric,
and hence CP at selected φ-planes will be considered. For the latter case, it is also
convenient to use a φ-averaged pressure coefficient defined as

〈CP 〉 =
1

2π

∫ 2π

0

CP dφ. (4.8)

First, we will consider the surface pressure distribution in potential flow. Six different
curves are shown in figure 10(a) that correspond to a uniform flow case and to
planar and axisymmetric strain cases, both at s = 0.2. For the planar strain case,
CP at three different φ-planes, φ = 0, π/4 and π/2, and 〈CP 〉 are plotted. The front
stagnation pressure is used as reference. The pressure distribution is symmetric about
θ = π/2 in the uniform flow case resulting in zero drag. The effect of strain is to
introduce a fore–aft asymmetry about θ = π/2 which produces a finite drag. The
decrease in favourable pressure gradient on the upstream side is somewhat slowed
down, but the region of favourable pressure gradient extends into the leeward side. In
the case of planar strain, the effect is largest along φ = 0 and smallest along φ = π/2.
The difference between 〈CP 〉 for planar and axisymmetric strains is of O(s2) and is
indistinguishable in the figure.

The surface pressure distribution for Re = 100 is shown in figure 10(b). Five
different curves are plotted: CP for uniform flow, and for axisymmetric strain at
s = 0.2; CP along φ = 0 and π/2 and 〈CP 〉 for planar strain at s = 0.2. On the
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Figure 10. (a, b) Surface pressure distribution for the case Θ = 0, Φ = 0. (a) Potential flow
solutions: - - - - -, uniform flow (s = 0); —◦—, axisymmetric strain at s = 0.2; —•—, φ-average
surface pressure 〈CP 〉 in planar strain at s = 0.2; CP at different φ-locations in planar strain: -·-·-·-,
φ = 0; —�—, φ = π/4; · · · · ·, φ = π/2. (b) Re = 100: - - - - -, uniform flow (s = 0); —•—,
axisymmetric strain at s = 0.2; ——–, 〈CP 〉 for planar strain (s = 0.2); · · · · ·, CP along φ = 0 and
-·-·-·-, CP along φ = π/2 in planar strain. (c) Compressional (Θ = π/2) strain: ——–, potential
flow, s = 0; · · · · ·, potential flow at s = 0.04; - - - -, Re = 300, s = 0; -·-·-, Re = 300, s = 0.04.

windward side, similarly to potential flow, the effect of strain is to slow down and
prolong the favourable pressure gradient. On this side, difference between the two
strain cases is small. However, significant difference exists on the leeward side. The
wake pressure is lower in planar strain than in axisymmetric strain which results in a
higher pressure drag for the former case.

Unlike the pressure drag, the viscous drag has no analogue in potential flow. We
will consider variation of surface vorticity to study the effect of strain on the viscous
drag. In a three-dimensional flow field, there are two orthogonal components of
surface vorticity: the tangential component, ωθ , and the azimuthal component, ωφ.
Under steady flow conditions, ωθ = 0 in the case of axisymmetric strain, whereas, in
planar strain, the φ-averaged tangential vorticity 〈ωθ〉 is zero. Hence the φ-averaged
azimuthal vorticity 〈ωφ〉 alone can be used to illustrate the effect of planar strain on
vorticity, and on the viscous drag. The distribution of 〈ωφ〉 is shown in figure 11(a)
for Re = 10. Three different cases are considered: uniform flow, axisymmetric strain
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at s = 0.1 and planar strain at s = 0.1. Corresponding results for Re = 300 are shown
in figure 11(b). There are two different mechanisms that influence the distribution
of surface vorticity under a straining flow. First, in addition to the uniform flow,
the imposed strain field must also satisfy the no-slip condition. As a result, for an
elongational strain, the surface vorticity from the strain component is opposite to that
arising from the uniform flow on the upstream side (θ > π/2); on the downstream
side (θ < π/2), ahead of flow separation the two contributions are of the same
sign. Although the effect of strain is to shrink the separated region, the strength
of the recirculation eddy is enhanced as indicated by the increased magnitude of
surface vorticity in the wake. This corresponds well with the enhancement of viscous
drag in the presence of elongational strain. The second mechanism leading to a
change in vorticity distribution is the strain-induced vortex stretching mechanism.
This mechanism also causes the magnitude of the surface vorticity to increase for
θ < π/2 and decrease for θ > π/2. Thus the overall effect of strain is to increase
viscous drag. As observed in table 4, the effect is strong in planar strain at low Re.
With increasing Re, the effect is nearly independent of the nature of the strain.

4.2.2. Compressional axis along relative velocity (Θ = π/2, Φ = 0)

In this section we present the results of a compressional planar strain imposed
on a uniform flow; in other words we consider the case Θ = π/2, Φ = 0 as shown
in figure 4(b). Magnaudet et al. (1995) have studied the same configuration for
axisymmetric strain. It is observed that the vorticity generated on the surface of the
sphere is intensified as it convects along the streamwise direction. The undisturbed
flow, U , has a stagnation plane downstream of the sphere at x = 2/s (for elongational
strain (Θ = 0) this plane is located upstream of the sphere). For the compressional
planar strain case, the stagnation plane is located at x = 1/s. A vortical wake from
the sphere approaches this stagnation plane from upstream and the irrotational
ambient flow approaches the stagnation plane from downstream. Thus there is a
discontinuity in vorticity at x = 1/s. At a low Reynolds number, this discontinuity
can be diffused by viscosity; but at higher Re, the flow becomes unstable even at
moderate s. Magnaudet et al. (1995) have discussed this problem in detail in the
context of axisymmetric strain and obtained the corresponding stability domain. In
the present simulations for planar strain, we simply restrict computations to two
values of s: one at s = 0.04 for 10 < Re 6 300 and the other at s = 0.1 for Re = 10
only.

Contrary to elongational strain, the effect of compressional strain is to advance
the location of separation and to increase the length of the recirculation region.
Corresponding data are presented in table 3 and figure 7, where compressional strain
cases are indicated by a negative value of s. Separation is found to advance more
on the (x, y)-plane than on the (x, z)-plane. For example, at Re = 50 and s = 0.04,
separation occurs at θ = 46.5◦ and 45.5◦, respectively, on the (x, y)- and (x, z)-planes
as opposed to 40.8◦ in uniform flow. A significant increase in the recirculation length
is also clear from figure 7. At Re = 50 and s = 0.04, the length is 0.62, while it is 0.41
in uniform flow. The influence of compressional strain is to reduce the drag force.
The drag coefficient for various Re is shown in figure 8. Since the strain magnitude
is small, the only distinguishable change is for Re > 200 for which CD is reduced by
11%. For the case of Re = 10, s = 0.1, a 20% decrease in CD is observed (not shown
in the figure).

The variation of 〈CP 〉 is shown in figure 10(c) for potential flow and for the case
Re = 300, s = 0.04. Under compressional strain, the region of favourable pressure



388 P. Bagchi and S. Balachandar

(a)

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

1.00 0.75 0.50 0.25 0

〈ω
φ
〉

(b)

0

–4

–8

–12

–16

1.00 0.75 0.50 0.25 0

〈ω
φ
〉

θ/p

Figure 11. φ-averaged surface vorticity distribution for (a) Re = 10 and (b) Re = 300: · · · · ·, uniform
flow (s = 0); - - - - -, axisymmetric strain at s = 0.1; ——–, elongational (Θ = 0) planar strain at
s = 0.1; -·-·-·-, compressional (Θ = π/2) planar strain at s = 0.1 (for Re = 10) and s = 0.04 (for
Re = 300).

gradient is reduced. The decrease in pressure drop in the windward side is also faster
compared to the uniform flow case. But unlike potential flow, 〈CP 〉 at Re = 300
is lower even on the downstream side of the sphere. Such a decrease in 〈CP 〉 on
the leeward side actually tends to increase the pressure drag. The effect is however
overcome by the decrease in favourable pressure on the windward side resulting in an
overall decrease in the pressure drag. A similar variation in 〈CP 〉 is observed at other
Reynolds numbers as well. The average surface vorticity 〈ωφ〉 for Re = 10, s = 0.1
and Re = 300, s = 0.04 is shown in figure 11. The magnitude of 〈ωφ〉 decreases on
the downstream side and increases on the upstream side which results in a decrease
in the viscous drag.
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The Re = 300, s = 0.04 case develops unsteady vortex shedding. The shedding
process appears to be more chaotic than in uniform flow and is dominated by a
low-frequency mode at St ≈ 0.035. Although the compressional strain magnitude
considered is weak, certain aspects of the flow, such as movement of the separation
line and the recirculation length, seem to fit the trend observed in elongational strain.
On the other hand, the behaviour of the drag coefficient cannot be extrapolated from
the results of elongational strain. As observed by Magnaudet et al. (1995), the present
approach becomes unstable for larger values of compressional strain. This raises the
interesting question of whether such an ambient flow configuration is stable for an
extended period of time.

4.2.3. Relative velocity along the plane of strain (Θ 6= 0 or π/2, Φ = 0)

This section deals with the situation where the relative velocity is in the plane of
strain but not aligned along the elongational or compressional direction of strain. In
particular, the case of Θ = π/4, Φ = 0 will be considered (see figure 4c). Along x = 0,
y > 0 (the top side of the sphere), the straining flow acts in the same direction as
the uniform flow, while along x = 0, y < 0 (the bottom side) it opposes the uniform
flow. Thus the y > 0 side will be called the high-speed side (marked HSS), and the
y < 0 side will be called the low-speed side (LSS). The effect of strain on the structure
of the wake is described first. Streamlines constructed from the velocity field on the
(x, y)-plane are shown in figure 12. For the given strain orientation, this is a plane
of symmetry. The Re = 10, s = 0.1 case is shown in figure 12(a). The symmetry of
the flow about the (x, z)-plane is broken, and the front and rear stagnation points
are no longer located at the poles θ = 0 and π. At higher Re, the shape of the
wake is dramatically modified in the presence of strain. Figures 12(b) and 12(c)
show the effect of increasing strain magnitude while Re is held fixed at 50. Even
a relatively weak strain of s = 0.05 can be seen to visibly break the axisymmetric
nature of the wake. The recirculation eddy is suppressed on the high-speed side,
while it is reduced in size on the low-speed side. Fluid moving around the bottom
of the sphere continues around the eddy and departs near the upper separation line,
joining the fluid from the high-speed side. The recirculation eddy almost disappears
with increasing strain magnitude, as shown in figure 12(c) for Re = 50, s = 0.1. At
even higher strain magnitudes the separation eddy is completely suppressed. The
effect of strain at higher Re is considered in figure 12(d ) for Re = 300, s = 0.1. The
deformation of the recirculation eddy is quite similar to that shown in figure 12(b).
Comparing figures 12(c) and 12(d ), it may be claimed that suppression of the eddy
is pushed up to higher strain magnitude as Re increases. At Re = 300, s = 0.1, the
flow is steady, thus suggesting that strain oriented at π/4 tends to inhibit the vortex
shedding process.

The locations of separation on the (x, y)-plane are presented in table 5. For the
case of s = 0.1, at all Re > 100, separation is advanced on the high-speed side
(φ = 0) and is delayed on the low-speed side (φ = π). The effect of increasing
s from 0 to 0.2 while keeping Re fixed at 50 is also shown in table 5. For a
relatively weak strain, at s = 0.05, the separation line remains a closed curve, though
not axisymmetric. Separation on φ = 0 occurs at θ = 41.9◦ which is higher than the
θ = 40.8◦ in uniform flow. Separation on φ = π is however delayed to θ = 37.9◦. When
s is increased beyond 0.05, lower separation no longer exists, and upper separation is
advanced further upstream. Also shown in table 5 are the locations of the rear and
front stagnation points. Owing to the symmetry of the applied strain field about the
(x, y)-plane, these points are confined to this plane only. However, they are no longer
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Figure 12. Streamline contours on the (x, y)-plane for Θ = π/4, Φ = 0. (a) Re = 10, s = 0.1;
(b) Re = 50, s = 0.05; (c) Re = 50, s = 0.1; (d ) Re = 300, s = 0.1.

located at θ = 0 and π. For the entire range of Re and s, the front stagnation point
is located nearly at the same θ on the high-speed side. The movement of the rear
stagnation point is however very different. At Re = 10 and Re > 200 and s = 0.1, it
is located on the high-speed side. But at Re = 50, s = 0.05 and Re = 100, s = 0.1, it
has moved towards the low-speed side.
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θs Stagnation point

Re s φ = 0 φ = π Rear Front

10 0.1 19.2 174.3
50 0.05 41.86 37.9 7.1, on LSS 174.0
50 0.1 47.64 173.9
50 0.2 52.19 170.0

100 0.1 57.58 31.71 5.3, on LSS 173.9
200 0.1 65.66 47.94 10.6 174.2
300 0.1 69.76 54.67 19.9 174.5

Table 5. Location of the separation and stagnation points for Θ = π/4, Φ = 0 case.

We also examine the sphere wake by means of the surface streamline plots in
figure 13. For the Re = 50, s = 0.05 case shown in figure 13(a), a downward movement
of the rear stagnation point (indicated as RS in the plot) away from the geometric
pole (θ = 0) is clearly visible. The top–bottom asymmetry in the wake is also quite
evident here. Figure 13(b) shows the surface streamlines for Re = 50 and s = 0.1.
The separation line is no longer a closed curve, and it exists only on the high-speed
side. With further increase in s, the separation line is gradually reduced before being
eliminated completely at a sufficiently high strain. The non-axisymmetric nature of the
wake can also be observed in figures 13(c) and 13(d ) corresponding to the Re = 100,
s = 0.1 and Re = 300, s = 0.1 cases.

A close observation of the surface streamlines reveals an interesting phenomenon.
In figure 13(a), for Re = 50 and s = 0.05, all the surface streamlines merge tangentially
to the separation line at the upper singular point located on the φ = 0 plane, whereas
only two surface streamlines intersect each other at the lower singular point at φ = π.
Thus, the upper singular point is a nodal point, denoted by N in the plot, while the
lower one is a saddle point, denoted by S. At s = 0.1 (figure 13b), the nodal point is
no longer located at φ = 0. Instead, there are two nodal points (N1 and N2) located
on either side of the (x, y)-plane, and a saddle point (S) appears at φ = 0. The trend
is further magnified at higher strain magnitudes. The effect of increasing Re is shown
in the next two plots. At Re = 100 and s = 0.1, in figure 13(c), the singular points at
φ = 0 and π are saddle points (S1 and S2). Two nodal points (N1 and N2) are now
located away from the (x, y)-plane in y < 0. At Re = 300, s = 0.1, in figure 13(d ),
two nodal points merge into the lower singular point (N) at φ = π, while the upper
singular point (S) at φ = 0 still remains a saddle point.

The drag coefficient CD for the case of Θ = π/4 and Φ = 0 is presented in fig-
ure 14(a) for s = 0.1. The coefficients CD , CPD and CVD have nearly the same values
as in uniform flow. Although there is a small increase in the coefficients over their
values in uniform flow, the effect is far less than what was observed under elonga-
tional alignment. Considering potential flow for the orientation Θ 6= 0 and Φ = 0, the
velocity potential is given by(
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1

16r̃2
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cos θ + s

(
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2
+

1

96r̃3

)
( 3

2
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Figure 13. Surface streamlines for Θ = π/4, Φ = 0. (a) Re = 50, s = 0.05; (b)Re = 50, s = 0.1;
(c) Re = 100, s = 0.1; (d ) Re = 300, s = 0.1.

In particular, for Θ = π/4 and Φ = 0, CD,pot = 0. Therefore the trend of a weak
influence on drag observed at finite Reynolds number is consistent with the potential
flow result.

The ambient flow considered here is not symmetric about the (x, z)-plane. As a
result, a lift force is generated along the y-direction. For Θ = π/4, CL,pot = 2s, and
the lift force is directed to the positive y-axis, i.e. from the low-speed side of the
sphere to the high-speed side. In the limit of low Reynolds number (Re � 1) also,
the lift coefficient was observed to be positive by Pérez-Madrid et al. (1990). The
present simulations, however, show that CL at moderate Re may be directed towards
the negative y-axis. The variation of CL and its pressure and viscous components are
shown in figure 14(b) for a fixed strain magnitude of s = 0.1. Except for Re < 40, CL
is negative over the entire range of Re. The pressure contribution CPL is negative for
approximately Re > 80, while the viscous contribution CVL is negative for Re > 10.
The generation of a negative lift force at finite Re is contrary to the potential flow
and low Reynolds number limits and therefore is somewhat surprising. However, it
must be pointed out that such a negative lift force has also been observed in both
experiments and computations for the case of spheres subjected to a linear shear flow
by Kurose & Komori (1999).

Figure 14(c) presents the variation of the lift coefficients with increasing s as Re is
held fixed at 50. The finite-Re behaviour is very different from the linear variation
predicted by potential flow. All three lift coefficients first attain a negative maximum
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Figure 14. Drag and lift coefficients for Θ = 45◦, Φ = 0. (a) Variation of CD with Re: —•—,
s = 0.1; - -• - -, strain-free uniform flow. (b) Lift coefficients at s = 0.1: •, CL; ◦, CPL; �, CVL.
(c) Lift coefficients at Re = 50: •, CL; ◦, CPL; �, CVL. - - - - - -, potential flow result.

at about s = 0.05. Both CL and CPL then increase with s and eventually become
positive for s > 0.1. The viscous part CVL, however, remains negative up to about
s = 0.25. At s = 0.05, the viscous lift contributes nearly 70% of the total lift, while
at s = 0.3 it accounts for only 12%. Thus, the pressure contribution takes over the
viscous contribution as Re and s increase.

The generation of the negative lift force is explored by considering separately
the pressure and viscous contributions. The pressure coefficient CP on the surface
of the sphere is shown in figure 15 for two cases: Re = 200, s = 0.1 and Re = 50,
s = 0.2. We consider the variation of CP with θ along φ = 0 and π where CP attains
extremal values. The corresponding distributions for potential flow are also shown.
The potential pressure along the high-speed side is slightly larger than that along
the low-speed side near θ = 0 and π. However, the large drop in pressure along the
high-speed side near θ = π/2 results in a positive lift. The finite-Re behaviour is
significantly different, especially in the wake region. For the Re = 200, s = 0.1 case,
the pressure drop along the high-speed side is much less and CP along φ = 0 and
φ = π is nearly the same for θ 6 π/2. On the other hand, for θ > π/2, CP along
φ = 0 is higher than that along φ = π. Therefore the negative value of CPL arises
essentially from the negative contribution in θ > π/2. In figure 15(b), for the case
of Re = 50, s = 0.2, the pressure drop on the high-speed side near θ = π/2 is large
enough to overcome the negative contribution arising from the upstream side, thereby
producing a positive value of CPL.
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Figure 15. Surface pressure distribution for Θ = 45◦, Φ = 0. (a) Re = 200, s = 0.1; (b) Re = 50,
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In figure 14 it was observed that for moderate strain magnitudes in the range
0 6 s 6 0.3, the pressure contribution to the lift force is generally positive at low
Reynolds numbers (Re = 10) and negative at higher Reynolds numbers (Re > 200).
For intermediate Reynolds numbers (Re = 50), the pressure contribution changes
from negative at low strain values (s 6 0.1) to positive at higher strain. This behaviour
is investigated further in figure 16 where contours of the local contribution to the
y-component of the pressure lift are plotted. Here the local contribution is defined
in terms of the deviation in the surface pressure from its surface-averaged value.
Four different cases are considered: (a) Re = 10, s = 0.1; (b) Re = 50, s = 0.05; (c)
Re = 50, s = 0.2; and (d ) Re = 300, s = 0.1. Owing to the symmetry of the flow about
the (x, y)-plane, only one half of the surface is shown. For all cases, the behaviour
near θ = π is similar to the potential flow result: higher than average pressure above
the centreline contributing to negative lift and lower than average pressure below the
centreline contributing to positive lift. The negative contribution above the centreline
somewhat outweighs the positive contribution, and thus for all four cases there is a
negative contribution to the pressure lift coming from the upstream portion of the
sphere. However, away from the upstream side, results are markedly different for each
case. For Re = 10, s = 0.1, a strong upward force is present on the downstream side,
which makes the resultant contribution positive. For Re = 50, s = 0.05, the pressure
on the upper surface is roughly comparable to that on the lower surface over almost
the entire range of θ except near θ = π. Near θ = π, the negative contribution is strong
enough to produce a negative pressure lift. When s is increased, as in figure 16(c)
for Re = 50, s = 0.2, a stronger positive force acts on the top surface near θ = π/2
resulting in a positive pressure lift. For the high Reynolds number case of Re = 300,
s = 0.1 shown in figure 16(d ), the significant pressure difference comes only from the
upstream side of the sphere, and the overall pressure lift is negative.

In summary, one can conclude that when the recirculation region is absent in
the wake, the pressure distribution for θ 6 π/2 dictates that the pressure lift force
must be positive, just as in potential flow. This situation arises at low Re when the
recirculation region is entirely absent, or at higher Re when the formation of the
recirculation region is suppressed by the presence of a strong straining flow. When
the recirculation region is present, the wake pressures above and below the (x, z)-plane
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Re s CVL due to τrθ CVL due to τrφ

10 0.0298 −0.03
50 0.0110 −0.04

100 0.0069 −0.04
200 0.0030 −0.03
300

0.1

0.0006 −0.02

0.05 −0.008 −0.06
0.1 0.011 −0.0450

0.2 0.035 −0.04

Table 6. Contribution of the shear stresses τrθ and τrφ to the viscous lift
for the case Θ = 45◦, Φ = 0.
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Figure 16. Contours of the y-component of surface pressure for Θ = π/4, Φ = 0. (a) Re = 10,
s = 0.1; (b) Re = 50, s = 0.05; (c) Re = 50, s = 0.2; and (d ) Re = 300, s = 0.1. Contours are plotted
in steps of 0.05. The dashed lines indicate negative values.

are nearly equalized, and the resultant effect is a negative pressure lift arising from
the front part (θ ≈ π) of the sphere.

The viscous lift force arising from two contributions, τrθ and τrφ, is listed in
table 6. The contribution from τrφ is negative over the entire range of Re and s. The
contribution from τrθ is mostly positive, but nearly an order of magnitude less than
that from τrφ, except at Re = 10 and at Re = 50 for high values of s.

The role of the shear stress τrθ in the lift force is examined in figure 17. The flow is
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Figure 17. Contours of the y-component of viscous force due to the τrθ contribution.
(a) Re = 200, s = 0.1, (b) Re = 50, s = 0.2.

from left to right, and the view shown here is looking towards the negative z-axis. Here
contours of the y-component of the viscous force arising from τrθ , i.e. τrθ cos θ cosφ,
are shown on one half of the sphere surface. A positive value of this quantity leads to
a positive viscous lift force, while a negative value contributes negatively. We consider
two representative cases: (a) Re = 200, s = 0.1 and (b) Re = 50, s = 0.2. For the first
case, values on the upper and lower surface of the sphere are nearly comparable but
of opposite sign over the entire range of θ. Thus the integrated value of τrθ cos θ cosφ
over the surface is negligible. For the second case, values on the upper and lower
surface on the upstream side of the sphere are roughly the same and of opposite sign.
But a positive contribution arises from the lower surface on the downstream side of
the sphere. Similarly to the surface pressure behaviour, the effect of τrθ is dictated by
the presence of a recirculation eddy. In the case of Re = 200, s = 0.1, the presence of
a recirculation region leads to a weaker τrθ distribution on the leeward side. On the
other hand, at Re = 50, s = 0.2, the recirculation eddy is suppressed, and a strong
flow gradient is created at the lower surface resulting in a larger and positive τrθ
contribution.

The persistent negative contribution from τrφ is explained in figure 18. Contours
of the local contribution to the viscous lift arising from τrφ, i.e. −τrφ sinφ, are
shown for Re = 200, s = 0.1. A strong negative force acts over almost the entire
surface. This downward force is generated by the distribution of the azimuthal
velocity component, uφ, around the sphere. Figure 18(b) shows the contours of the
uy velocity component on the (x, z)-plane. Note that in this plane uφ is identical to
uy . The uy component is directed towards the negative y-axis around the sphere over
almost the entire (x, z)-plane, except near the rear stagnation point. The contours
of uy are clustered more closely on the upstream side than on the downstream side.
As a result a strong negative gradient is generated over the upstream side of the
sphere, and a relatively weaker positive gradient is created over a smaller region on
the downstream surface. Therefore, −τrφ sinφ integrated over the entire surface leads
to a negative contribution to the lift force.

4.2.4. Effect of varying Θ

The effect of varying the angle Θ is investigated in figure 19. We consider only
the range 0 6 Θ 6 π/2, and the results for π/2 < Θ < π can easily be obtained by
the transformation Θ → Θ + π/2. According to the potential flow result (4.9), the
drag coefficient for such a configuration is given by 2s cos 2Θ, and the lift coefficient
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Figure 18. Viscous lift due to τrφ at Re = 200, s = 0.1. (a) Contours of the y-component of
viscous lift due to τrφ. (b) Contours of azimuthal velocity component uφ in the (x, z)-plane.

(directed towards the positive y-direction) by 2s sin 2Θ. These results are compared
with the simulation results for the Re = 10, s = 0.1 and Re = 50, s = 0.1 cases.
For both cases the trend of the pressure drag matches reasonably well with the
potential flow result. For Θ < π/4, the elongational part of the strain-rate tensor is
more aligned with the direction of relative velocity and the drag coefficient is higher
than in uniform flow. As Θ increases, the compressional part of the strain-rate tensor
becomes more aligned with relative velocity and results in a decrease in CD .

The lift coefficients for the two cases are shown in figures 19(b) and 19(c). The trend
is somewhat complex and is dictated by the presence or absence of a recirculation
eddy. The pressure contribution, CPL, at Re = 10 is positive for all Θ with a
maximum value at about Θ = π/4 and thus follows the same trend as in potential
flow. The viscous contribution CVL is negative in the range π/4 < Θ < π/2 due to a
negative contribution from τrφ, as discussed earlier. However, the pressure contribution
outweighs the viscous contribution, and the total lift force remains positive at Re = 10
for all Θ.

At Re = 50, in figure 19(c), we consider the range 0 6 Θ 6 3π/8, as Θ = π/2 (pure
compressional alignment) was found to be unstable (see § 4.2.2). Unlike in potential
flow, CPL is not symmetric about Θ = π/4, and it exhibits a peak around Θ = π/8.
Although positive in general, it tends to become negative at higher Θ where the
compressional strain is increasingly aligned with relative velocity. Such behaviour is
again due to the presence of a recirculation region. For Θ < π/8, the recirculation
region is suppressed, and the top–bottom asymmetry in the surface pressure leads to a
positive CPL. Above Θ = π/8, a recirculation region starts developing which reduces
the wake pressure difference above and below the (x, z)-plane, and the pressure
differential near the front stagnation point dominates, leading to a negative pressure
lift. The viscous lift coefficient at Re = 50 is negative over the entire range of Θ.
For Θ > π/6, its magnitude is higher than the pressure lift coefficient resulting in a
negative total lift force.

4.2.5. Relative velocity away from the plane of strain

In this section we will consider a strain orientation such that the relative velocity is
not on the plane of strain; in particular, the results for Θ = 0 and Φ = π/4 (figure 4d )
are presented here. For an axisymmetric strain this configuration is the same as for
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Θ = π/4, Φ = 0. For a planar strain these two cases are very different in terms of
the wake structure and the drag and lift forces. Here, the (x, z)-plane is a plane of
symmetry, and streamlines constructed on this plane are shown in figure 20. Adjacent
to the sphere, the ambient velocity is higher along x = 0, z < 0, and this side will
be termed the high-speed side while x = 0, z > 0 will be called the low-speed side.
A word of caution is warranted in interpreting this figure–although in the vicinity of
the sphere the effect of strain appears to move the fluid from top left to bottom right,
the far-field flow is consistent with what is shown in figure 4(d ).

In figure 20(a), for Re = 10, s = 0.1, it is observed that the rear and front stagnation
points move away from the geometric poles at θ = 0 and π. The front stagnation point
has moved towards the high-speed side, and the rear one has moved to the low-speed
side. At Re = 50, s = 0.05, in figure 20(b), the wake is suppressed on the high-speed
side and reduced in size on the low-speed side. As s is increased to 0.2 keeping Re fixed
at 50, in figure 20(c), the wake is completely suppressed. The case of Re = 300, s = 0.1
is shown in figure 20(d ). Suppression of the wake is now possible only at higher strain
magnitudes. Comparing figure 20 with figure 12 it can be seen that the streamlines on
the (x, z)-plane in the case of Θ = 0, Φ = π/4 appear qualitatively similar to those on
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Figure 20. Streamline contours for Θ = 0, Φ = 45◦ on the (x, z)-plane. (a) Re = 10, s = 0.1;
(b) Re = 50, s = 0.05; (c) Re = 50, s = 0.2; (d ) Re = 300, s = 0.1.

the (x, y)-plane in the case of Θ = π/4, Φ = 0. However, quantitative differences exist
between the two cases, for example, in terms of the location of the separation points.
In general, at the same Re and s, the deformation of the wake is less for Θ = 0,
Φ = π/4 than for Θ = π/4, Φ = 0. This can be clearly seen for Re = 300, s = 0.1 by
comparing figures 12(d ) and 20(d ).

The surface streamlines for the orientation Θ = 0, Φ = π/4 are shown in figure 21,
and a qualitative comparison with figure 13 can be drawn. At Re = 50, s = 0.05, in
figure 21(a), the axisymmetric nature of the wake is broken, and the rear stagnation
point (denoted by RS in the figure) is seen to have shifted to the low-speed side. Two
saddle points (S1 and S2) are seen on the separation line along the (x, z)-plane, while
two nodal points (N1 and N2) appear on both sides of the (x, z)-plane on the high-
speed side. When s is increased to 0.1, the asymmetry about the (x, y)-plane is further
enhanced as in figure 21(b). A further increase in s to 0.2 causes the separation line
to disappear on the low-speed side (figure 21c). The nodal points now have moved
closer to the (x, z)-plane. The case of Re = 300, s = 0.1 is shown in figure 21(d ). The
separation line now appears as a closed curve, and the rear stagnation point has
shifted to the high-speed side. On the symmetry plane, a saddle point (S) exists on
the high-speed side and a nodal point (N) on the low-speed side.

The velocity potential for the configuration Θ = 0, Φ 6= 0 is given by(
r̃ +

1

16r̃2

)
cos θ + s

(
r̃2

2
+

1

96r̃3

)
( 3

2
cos2 θ − 1

2
) cos2 Φ

−s
(
r̃2

4
+

1

192r̃3

)
[(sin2 θ cos 2φ)(1 + sin2 Φ) + (sin 2θ sinφ) sin 2Φ]. (4.10)

For Φ = π/4, the above equation yields CD,pot = s. The corresponding finite-Re results
are shown in figure 22. At s = 0.1, CD is slightly lower than the uniform flow result
over the entire range of Re. The effect of increasing s at Re = 50 is also shown in the
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figure. Unlike the potential flow result, CD at finite Re does not vary linearly with s.
It reaches a minimum at around s = 0.1, and then slowly increases. At s = 0.3, CD is
about 26% higher than the uniform flow result. From the streamline plots shown in
figure 20 it can be inferred that up to about s = 0.1, the presence of the recirculation
region dictates the behaviour of drag; during this process the drag force decreases.
With the further increase in strain, the recirculation region is suppressed, and the
potential flow behaviour is mimicked somewhat.

Due to the asymmetry in the ambient flow about the (x, y)-plane, a side force is
generated along the positive z-direction. This behaviour is different from the potential
flow result, which predicts a side force of magnitude s, but directed along the negative
z-direction. Here we will denote the side-force coefficients by CZ , CZ,P and CZ,V
representing the total, pressure and viscous components, respectively. Variations of
these coefficients for the finite-Re case are shown in figure 23. When s is fixed at 0.1
and Re is varied, the coefficients are positive over the entire Re range. Although the
flow field close to the sphere appears to be qualitatively similar to the case of the
in-plane strain oriented at Θ = π/4, Φ = 0, by comparing figures 23 and 14, it can be
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seen that the effect of strain orientation on lift is quite different. Most importantly,
for the Θ = π/4, Φ = 0 case, the lift coefficient is an order of magnitude lower than
the drag coefficient, whereas in figure 23, the side-force coefficient CZ is significantly
larger, and can be as high as 30% of CD .

The variation of 〈CP 〉 with θ is shown in figure 24(a) for potential flow and for
Re = 50. In potential flow, the asymmetry in 〈CP 〉 about θ = π/2 increases with s
contributing to a higher drag, whereas, at finite Re, the behaviour of drag is dictated
by the presence or absence of a recirculation region in the wake. For Re = 50, s 6 0.1,
the presence of a recirculation region raises 〈CP 〉 on the downstream side which
results in a lower drag compared to uniform flow. For s > 0.1, the recirculation region
is suppressed, and 〈CP 〉 on the downstream side is reduced which results in a higher
drag.

Figures 24(b) and 24(c) show the pressure contours on the surface of the sphere
for potential flow at s = 0.1 and for Re = 50, s = 0.1. Asymmetry in the surface
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Figure 24. Θ = 0, Φ = π/4. (a) φ-averaged surface pressure coefficient: - - - - -, potential flow at
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pressure distribution about the (x, y)-plane is responsible for the z-force in both cases.
The negative z-force in potential flow is primarily due to the dominant low pressure
present on the high-speed side. No such distinct low-pressure region can be observed
in figure 24(c). On the upstream side, in figure 24(c), pressure on the high-speed side
is higher than on the low-speed side, while on the downstream side, pressure on the
low-speed side is higher. The positive contribution coming from the upstream side
outweighs the negative contribution from the downstream side, resulting in a positive
side force.

Similarly to the pressure contribution, the viscous contribution to the z-force is
also positive for the finite-Re cases. While both τrφ and τrθ contribute to the z-force,
the former accounts for nearly 80%, and it is examined in figure 24(d ) for Re = 50,
s = 0.1. Here contours of the azimuthal velocity component uφ are plotted on the
(x, y)-plane, and the view shown is looking along the z-direction. Positive values of
uφ imply that it is directed from the plane of the paper into the positive z-direction.
Except in the near-wake region, uφ appears to be positive over the entire region
around the sphere. Particularly, on the windward side, a strong positive gradient τrφ
exists which contributes positively to the viscous side force.
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4.2.6. Effect of Varying Φ

Finally we consider the effect of varying the angle Φ between the relative velocity
vector and the plane of strain. It is sufficient to consider the range 0 6 Φ 6 π/2, and
the results for π/2 6 Φ 6 π can be obtained by the transformation Φ → Φ + π/2.
The drag and lift forces for varying Φ are shown in figure 25 for potential flow and
for Re = 50 at s = 0.1. The potential flow solution (4.10) yields CD,pot = 2s cos2 Φ and
CZ,pot = −s sin 2Φ. The behaviour of the finite-Re drag and side-force coefficients are
quite complex and markedly different from the potential flow results.

5. Conclusion
This paper is concerned with the effect of spatial non-uniformity in the undisturbed

ambient flow on the forces acting on a spherical body. Using a simple scaling argument,
it has been shown that the added-mass and pressure-gradient forces due to the particle
acceleration can be neglected for heavy particles. However, when the particle size is
comparable to the flow scales and the particle Reynolds number is of the order of
unity or more, the added-mass and pressure-gradient terms arising from the fluid
acceleration are important. In this paper we present results from the numerical
simulations of a planar straining flow superimposed on a nominally steady uniform
flow past a stationary sphere. The numerical methodology used in this study employs
a high-resolution Fourier–Chebyshev pseudospectral scheme. The investigation covers
a particle Reynolds number range of 10 to 300, thus extending from a non-separated
wake to a time-dependent three-dimensional flow field. The planar straining flow is
characterized by three parameters: the strain magnitude s, and the angles Φ and Θ
formed between the relative velocity vector and the principal directions of the strain-
rate tensor. A wide range of s, Θ and Φ is examined with a systematic comparison
to the results of potential flow and finite-Re axisymmetric straining flow.

The focus has been to study the effect of planar strain on the structure of the
wake in an attempt to explain the drag and lift forces acting on the particle. Several
important observations can be made.

(a) Planar strain, when its axis of elongation is aligned with the direction of
relative velocity, stabilizes the wake flow and delays the onset of unsteadiness. With
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increasing strain magnitude, separation is delayed and the length of the recirculation
region decreases. Elongational strain of a sufficient magnitude completely suppresses
the recirculating eddy. In this respect, both the planar and axisymmetric strains have
a similar effect on the wake structure. Despite the three-dimensional nature of the
planar strain, the separation line is nearly axisymmetric as indicated by the surface
streamlines. Also, in terms of the length of the recirculation eddy and the angle of
separation, the planar and axisymmetric strains yield similar results.

(b) Under the elongational alignment (Θ = 0), both the planar and axisymmetric
strain enhance the drag force. According to the potential flow theory, the strain-
induced increase in drag is given by 2s, and it is independent of the nature of the
strain. In the case of axisymmetric strain, above a certain Re, the increase in pressure
drag very nearly follows the potential flow prediction. In the case of planar strain,
the increase in pressure drag is still linear with s, but the rate of increase is higher. In
both the planar and axisymmetric strains, the viscous drag also increases with s, thus
the increase in total drag is higher than the potential flow prediction. At low Re, the
increase in viscous drag is higher for planar strain; however, for Re > 50, the viscous
drag is nearly the same for both cases.

(c) In potential flow, strain introduces a fore–aft asymmetry about θ = π/2, con-
tributing to drag. At finite Re, the region of favourable pressure gradient extends into
the leeward side of the sphere. Nevertheless, the wake pressure decreases, resulting in
a further enhancement of the pressure drag. The drop in the wake pressure is higher
for planar strain.

(d) There are two mechanisms by which the surface vorticity distribution is modified
under the influence of strain, leading to an increase in the viscous drag. First, in
addition to the uniform flow, the imposed straining flow must also satisfy the no-slip
condition. This leads to an enhancement of the surface vorticity on the downstream
side, and a reduction on the upstream side. Secondly, the vortex stretching mechanism
also leads to a similar modification in the surface vorticity. The resultant effect is an
increase in the viscous drag.

(e) When the compressional direction of strain is aligned with relative velocity
(Θ = π/2), the extent of the favourable pressure gradient on the upstream side is
reduced, and the recirculation region increases in size. Both the pressure and viscous
drag components decrease compared to the uniform flow result. Results for the com-
pressional alignment cannot be extrapolated directly from those of the elongational
alignment. The compressional alignment promotes unsteady vortex shedding in the
wake, and even a modest magnitude of strain renders the flow highly unstable. The
instability arises from the discontinuity in the vorticity distribution across a stagnation
plane located downstream of the sphere.

(f) Planar strain oriented at an angle other than pure elongational or compressional
alignment breaks the axisymmetric nature of the wake. The recirculation eddy is
significantly deformed and the separation line, along with the associated critical
points, on the surface of the sphere undergoes complex changes with increasing strain
magnitude. For the case of Θ = π/4, Φ = 0 considered in detail, the recirculation
region is completely suppressed at sufficiently high strain, and the strength of strain
required for complete suppression increases with Re.

(g) For the Θ = π/4, Φ = 0 configuration, the drag force is nearly the same as
in the uniform flow, in accordance with the potential flow result. However, unlike
the potential flow where lift is always positive and increases linearly with the strain
magnitude, at finite Re the lift force shows a non-monotonic behaviour and can be
negative. The negative lift force can be related to the presence of a recirculation
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region in the wake. At higher strain magnitudes, when the recirculation region is
suppressed, the potential flow behaviour is approximately recovered and the lift force
becomes positive.

(h) The out-of-plane strain orientation Θ = 0, Φ = π/4 is found to yield markedly
different results from the in-plane orientation Θ = π/4, Φ = 0 in terms of the flow
structure and forces. In the case of axisymmetric strain these two configurations are
identical. The drag force is higher than the uniform flow result but not linear with s
as predicted by the inviscid theory. For the Θ = 0, Φ = π/4 orientation, the symmetry
of the flow is broken, and as a result there is a side force. The side force is opposite in
sign to that predicted by the potential theory, and its variation with strain magnitude
is not linear.

(i) In general, for varying Θ and Φ, the present results show that at low Re (e.g.
Re ≈ 10) and for high strain magnitude in the absence of a recirculation eddy, the
finite-Re drag and lift forces follow somewhat the pattern observed in potential flow.
At higher Reynolds numbers, their behaviour is dictated by the presence of an eddy
and thus may be very complex in nature.
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